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We obtain central limit theorems for the stochastic parts of Lp-norms of
smoothed cubic spline estimators. The proofs are based on the observation that the
variance term of the cubic spline is approximately of a form corresponding to a
kernel estimator. 1993 Academic Press. Inc.

I. INTRODUCTION

We consider the asymptotics of global measures (Lp-norms, I ~ p < (0)
of the estimation of a regression function by a cubic smoothing spline.
The observations

I ~ i ~ n,

are given, where the design points Xi' I ~ i ~ n, are known and evenly
spaced on [a, b]. For convenience we assume that Xi = a + (i/n)( b - a),
I ~ i ~ n. We assume throughout this paper that the random errors
{ ~ i' I ~ i ~ n} are independent identically distributed random variables
(ij.d.T.v.'s) satisfying

and

for some v > 2.

(1.1 )

(1.2)

The cubic spline estimator gn of the regression curve g is defined to be a
function minimizing

" I nA.f (u"{t))2dt+- L (V;-U(XJ)2.
a n i= I "'
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(1.3)
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The parameter A= A(n) > 0 is the smoothing parameter. Splines playa very
important role in numerical analysis and stochastic curve estimation, and
therefore several authors have studied their properties. For a review and
bibliography on splines we refer to De Boor [5], Silverman [18], and
Eubank [7].

It is well known that g n is a linear function of the observations Yi'

1~ i ~ n, which means that there exists a weight function Gnet, x) such that

(1.4 )

Silverman [17] studied the connection between spline smoothing and
kernel (or convolution or moving average) smoothing. He showed that,
under suitable conditions, the weight function Gn is approximately of a
form corresponding to smoothing by a kernel function K. The kernel K is
given by

b - a . ( 1r)K(u) = -2-exp( -2 -1/2 lui) sin 2- 1
/
2 lui +.4 .

As it is usual in curve estimation we write

where

is the random error and
1 n

glnl(t)-g(t)=- L Gn(t,x;)g(x;)-g(t)
ni=1

(1.5 )

is the bias (numerical error). It turns out that the approximation of splines
with kernel smoothing works very well for the random error but it does not
give acceptable results for the bias. This is very similar to the behavior of
Fourier type curve estimators (Horvath [8]).

The main result of this paper is the computation of the limit distribution
of

Up) = rlin(tW wet) dt,
a

where w is a non-negative weight function. We assume that w is bounded
and it is continuous on [a, b] \ C, where the Lebesque measure of C is zero.
We also study the asymptotics of

In(p) = r lin(t) + un(tW wet) dt,
a
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where {u,,(t), a ~ 1~ b} is a non-random shift. If U,,(/) = g(,,)(t) - g(/) is the
bias, then this special case of I,,(p) is denoted by 1:(p). The integrated
squared error £1:(2) has been a very popular measure of accuracy in curve
estimation. Wahba [19], Rice and Rosenblatt [15,16], and Ragozin [14]
gave upper bounds for EI:(2) and £1,,(2). Lii [12] obtained central limit
theorems for L 2-norm of spline density estimators. To the best of our
knowledge this is the only result which gives the asymptotic distribution of
a functional of a spline. Devroye and Gyorfi [6] advovated the L,-norm
as a measure of accuracy in estimation of functions. However, the limit dis­
tributions of the Lp-norms of splines are unknown. The limit distributions
of the Lp-norms of kernel-density estimators were obtained by Csorgo and
Horvath [4], Csorgo el at. [3], and Horvath [9]. The limit distributions
of Lp-norms are of statistical significance, because goodness-of-fit tests can
be based on them. The computation of the order of I,,(p) is not enough in
statistical applications.

Before we state our results we list a few conditions and introduce some
notations. Let 1~ p < cx) and r ,,( I) = n 1/2A1/8U,,( I). We assume

Cl. A(n)---...O,

C2. lim sUP,,~x sUPa";;,,,;;h Ir,,(t)1 < 00,

C3. lim" ~ x sup",,;; ''';;h_,\li4 sUPO",-,,,;;,\li4 Ir,,(t) - r,,(1 + s)1 = 0,

C4. lim sup" ~x n l /v
-

I /2A-1/4(n) < 00,

C5. v> max(3, 2p - 2).

We define

D2=~r. K 2(u)du,
b-a -x

a(s) = f~x K(/) K(t + s) dtI[JC K 2
(t) dt,

cp(x) = (2n) - L/2 exp( - x 2/2),

rjJ(u; x, y) = 2n(1 ~ U 2 )1/2 exp ( - 2(1 ~ u2) (x
2+ y2 - 2UXY»).

m= foc rIDx+r,,(t)IPl-v(t)cp(x)dldx
- C£" a

m.=DPrw(/)dl fX IxIPcp(x)dx
a -- CA)

82 = f fb ID 2xy + Dr ,,(/)(X + y) + r~(t)IP w2(t)( rjJ( a(u); x, y)
RJ a

- cp(x) cp(y» dl du dx dy
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and

e~ = D2
p fb W2(t) dt f Ixyl p (!/J(CX(U); x, y) - q?(X) q?(Y» dx dy dUo

o R3

Now we can state our first central limit theorem.

273

THEOREM 1. We assume that Cl, C4, and C5 hold. Then, as n ...... 00, we
have

where N(O, 1) is a standard normal r.v.

The next theorem may be of more statistical interest.

THEOREM 2. We assume that CI-C5 hold. Then, as n ...... 00, we have

where N(O, 1) is a standard normal r.v.

Theorem 2 remains true if C3 fails. In this case ()2 must be replaced by

+ DyrAt - u;.I/4(n)) + rn(t) rn(t - UA 1/4(n»)IP

x w2(t }(!/J(a(u); x, y) - q?(x) q?(Y» du dt dx dy.

Also, we still have Theorem 2 if C2 changed to

lim suprIrn(tW w(t) dt < ~
n _ 00 a

with t = max(3, 2p - 2). If p = 2, then the expected value and variance have
simpler forms. Assuming p = 2 one can write

m(2) = D 2rw(t) dt +rr~(t) w(t) dt
o 0

and
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+ 4D2 fh r~(t) W(t) dt f xy(t/I(~(U); x, y) - <p(X) <p(y)) du dx dy
a R)

+ 2D3fh r,,(t) W(t) dt f xy(X + y)(t/!(CX(U); x, y)
a R J

- <p(X) <p(y) du dx dy.

Wahba [19], Rice and Rosenblatt [15], and Ragozin [14] studied the
behavior of J~r~(t)dt. They showed that the rate at which J~(g(,,)(t)­

g(t))2 dt tends to zero is determined by the rate at which the Fourier coef­
ficient of g decays, which depends on the smoothness of g periodically
extended. Assuming that g is smooth they got that

r(g(1I)(t)-g(t))2dt=O()c2(n)).
a

(1.6)

Let u,,(t) = g(lI)(t) - g(t) and w(t) = 1. If g is smooth (i.e., (1.6) holds) and
nJc 9i4 (n) ~ 0, then by Theorem 2 we have

{n(b - a)14 AJ/4(n) /:(p) - (D2(b - a)

+rn), 1/4(n)(g(1I)(t) - g(t))2 dt) }/(02(b - a)I/4 AJ/
4(n))1/2~ N(O, 1),

a

(1.7)

where

If we assume that nA J7/8(n) ~ 0, then (1.7) can be replaced by

{n(b-a)I/4 ).1/4(n)/:(p)_D2(b_a)}/(02(b_a)li4 Ali4(n))J/2~N(O, 1).

(1.8)

Similar arguments can be used to get the limit distribution of
J~ Igll(t) - g(tW w(t) dt, if P~ 2 and A(n) is small enough.

Wahba [19] and Silverman [17] discussed the choice of the smoothing
parameter A. They suggested that the optimal A should minimize £/,,(2),
the integrated mean squared error. Wahba [19] and Rice and Rosenblatt
[15] showed that the optimal smoothing parameter ). must be propor-
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tional to n -4i
9

. In this case we can apply Theorem 1 to get the limit dis­
tribution of the stochastic part of the smoothing spline. Combining (1.6)
and Theorem 2 we can get a similar result for I :(p), 2 ~ p < 00, assuming
that g is smooth. Cox [2] contains some asymptotic results on the bias of
splines, which might be useful to get the limit distribution of I ,~( p),
l~p<(fj.

2. PROOFS

First we need a few notations. Let

K*(u)=K~n(u)= -(b-a)2-3i2r,.nexp(-2 'i2Iul)sin(2 1i2Iul_IX,.II)'

where c5(t) = min(t - a, b - t),

and

Thus we have

We also define

6-)2 ~ r~n ~ 6+4)2. (2.1 )

{

2a-x,

x*=
2b-x,

a+b
if a~x<-2-

if a + b b
--2-<x~ .

(2.2 )

Throughout this paper C j stands for an absolute constant.
The following lemma is a special case of Theorem B of Silverman [17].

Silverman [17] did not assume that the design points are evenly spaced
and so got a somewhat weaker result than what we need now. However,
the proof of the following lemma follows immediately from the proof of
Theorem B of Silverman [17].

LEMMA 1. We assume that }.(n)-+O (n-+ 00). There are constants C 1

and C2 such that
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where h = ;, \ /4 and
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I
K 1(t, x) = h {K((t - x)/h) +K*( (t - x* )/h)}.

Proof Following the proof of Theorem B of Silverman [17], we get
the exponential term exp( -C2(h-a)/).1/4) in the modified corollary of
Silverman [17]. We assume the design points are evenly spaced and
therefore the second integral in the definition of Gn, idtl in (4.11) of
Silverman [17] is zero for each t > O. Thus we get that in this case
suPu)IG",;I:::; C3 /(nJi. I

/
4

), which completes the sketch of the proof of
Lemma I.

Let

Using Lemma I we can estimate the difference between Lp-norms of g" and
g".I' The estimator g".1 is a kernel regression estimator, but the kernel
depends on n as well as t.

LEMMA 2. We assume that nh 2(n) -+ CiJ, h(n) -+ 0, (n -+ CiJ), and C2, C5
hold. Then, as n -+CiJ, we have

r l(nh)I/2 g,,(t) + r,,(t)1 p w(t) dt
<J

-rl(nh)I/2 g".I(t) + r,,(t)1 p 11'(/) dt = op(h l /2).
<J

Proof First we note

h "
y~(t) = var((nh)I/2 gn(t)) = (J2 - 1: G~(t, Xi)' (2.3)

n;~ I

}'~.I(t)=var((nh)li2gn.I(t))=(J2~ ±K;(t,xJ (2.4)
i= )

and

b"jt) = cov((nh)I/2 gn(t), (nh)I/2 gn.l(t))

h n

= (J2 - L Gn(t, x;) K\(t, xJ
ni~1

(2.5)
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We get from Lemma I that

a~t.x~h

which implies immediately that
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(2.6 )

and

It follows from the definition of the design points that

(2.8 )

sup I~ i Ki(t,x;)-hrKi(t,X)dX!=O( hI2 )' (2.9)
a~l~h ni=l a n

Also,

fb I fb
h a Ki(t,x)dx=-,; a K 2((t-x)jh)dx

+~(K((t-x)jh) K*((t-x*)jh) dx

1 fh+-,; a (K*((t-x*)jh))2dx

=R~l)(t) + R~2)(t) + R~3)(t). (2.10)

It is easy to see that

(2.11 )

and therefore

IR~l)(t) - f~x K
2
(u) duj

~ C4 {exp( - 2 1
/
2(t - a)jh) + exp( - 21

/
2(h - t)jh}. (2.12)

Next we note that

(2.13 )
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Using the definition of x* we get

1 la+hl/2-f exp(-2 1/2It-x*l/h)dx
h a

I f((/+ hl/2

="h exp(-2·· 12(t+x-2a)/h)dx
a

:::;; C6 exp( -2 '/2(t - a)/h)

and a similar argument gives

(2.14 )

1 .h-, j exp(-2 li2It-x*l/h)dx~C7exp(-2-li2(b-t)/h). (2.15)
1 (a + h)i2

Putting together (2.4), (2.10), 2.12)-(2.15) we obtain that

sup 11';'.I(t)I:::;; Cs·
lJ~/~h

Similar calculations give that

1\ " Isup - L K,(t, x;) ~ C<j,
a!5;(~hn i=J

and therefore (2.7) and (2.8) imply

sup !V;'(t)-"/;'.l(t)! =o(h)
llS;/~h

and

sup Ib".l(t)-Y;'.l(t)1 =o(h).
a~t~h

Next we show that there is a positive constant C IO such that

inf V;'.l(t)?:C lO .
ll~/~h

(2.16 )

(2.17 )

(2.18 )

(2.19 )

(2.20 )

By (2.10), (2.12)-(2.15) we can find two positive constants Cll and C 12

such that

inf }';' I(t) ?: C 11 .
a+C12h~l~h-C12h •

(2.21 )
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Applying (2.4) and (2.9) we get that

lim inf Y~.l(t)=lim inf (J'2hfbKf(t,X)dX
n-Jo·'L u~t~a+CI2h IJ_ x; O.:o:::;;/~C12h a

(J'2 (u + bl/2

~ lim inf, -h f (K((t-x)/h)+K~n((t+x*)/h)2dx
II_X a~t~a+(12h a

279

f
it - u)/h

= (J'2 lim inf (K(u)+ K~,,( -u + 2(t- al/h)f du
n~ x u<;t<;a+C12h -(la+b)/2 - ()/h

= (J'2 inf r (K(u) + K~( -u + 2X))2 du > 0,
o::::;x~ el2 -_·x

where

K~(u)= -2- 3
/
2r,exp(-2 li2Iul)sin(2'li2Iul-lXx)'

rx cos IX x = 1 - 2 sin(2 1
/
2x)

r, sin !Xx = I + 2 COS(2 I
i
2X).

(2.22 )

A similar argument is working when b - C 12 h:( t:( b, which also completes
the proof of (2.20).

Let Pn.l(t) = cor((nh)li2 gn(t), (nh)I/2 g"I(t). It is immediate from (2.18),
(2.19), and (2.20) that

sup 11 - Pn.l(t)1 = o(h).
a$,{ l:!fh

We assume that 3:( r:( v. It is easy to check that

1 "
sup - I Ih 1

/
2K t(t, xi)lr E I~ilr = 0(h 12 ,r)/2)

a~t~h n i= I

and by Lemma 1 we have

1 n

sup - L Ih l/2G,,(t,x i WEI¢;i'=0(h(2-r)/2).
a'!f;t~bni=1

(2.23 )

(2.24)

(2.25 )

Using the assumption nh2
-+ 00 (n -+ (0) and (2.16), (2.18), (2.24), (2.25)

we find two constants C 13 and C 14 such that

(2.26 )



280

and

LAJOS HORVATH

(2.27 )

Choosing r> max(3, 2p - 2) in (2.26) and (2.27) we can apply
Theorem \7.6 in Bhattacharya and Rao [\]. If N stands for a standard
normal r.v. then we can write

(2.28 )

which implies

sup EI(nh)1/2 g ,,(t)1 2P 2~CI5'
a~l~b

Similar arguments give

sup E l(nh)li2g,,(t)1 2P 2 ~ C 16 •

a~(~h

The Cauchy inequality yields

(2.29 )

(2.30 )

E II(nh)I/2 g,,(t) + r,,(tW -1(nh)I/2 g".l(t) + r,,(tWI

~ 2P- I(E{ l(nh)I/2 g,,(t) + r ll (t)1
2

p .. 2 + l(nh)li2 gll.l(t) + r ll (t)!2
p -2})

x (E((nh)I/2 (g,,(t) - g".I(t)))2)li2. (2.3\)

We get immediately from (2.23) that

sup E((nh)li2 (g,,(t) - gil, 1(1)))2 = o(h).
a~t~h

Thus we proved

(2.32)

rE II(nh)li2 g,,(t) + r,,(tW
a

-1(nh)li2gll.I(t)+r,,(tWI w(t)dt=o(h 1
/
2), (2.33)

which implies Lemma 2.

According to the following lemma we can assume without loss of
generality that the original observations are normal r.v.'s.
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LEMMA 3. We assume Ct, C2, and C5 hold. Then we can define a
sequence of Wiener processes {WAu), - 00 < u < oo} such that

hf [(nh)t i 2g".,(t) + r,,(tW w(t) dt
a

h-f Ir".,(t)+r,,(tWdt=op(h'/2),
u

where

r".t(t) = (b
h
:

2
a) 1/2 rK,(t, x) dW,,(x).

Proof Introducing

one can write

S(x)= I. c
1~i~x

S(x) = 0, 0 ~ x ~ 1,

(
h)'/2 f ( X )(nh)I/2 g".,(t)= - K, t,a+-(b-a) dS(x).
n (0.,,] n

(2.34 )

Komlos et al. [10, 11] and Major [13] constructed a Wiener process
{W(x), x ~ O} such that

sup IS(x) - O'W(x)1 = o(n'/\') a.s. (2.35)
O~x~n

Integration by parts and (2.35) yield

sup l(nh)1/2g".,(t)_(~)1/2 0' f" K,(t,a+~(b-a))dW(x)1
u,,;;,r,,;;,h non

= 0 p(n '/''j(nh) 1/2)

= 0 p(n '/''j(nh) 1/2).

The scale and shift transformation of the Wiener process implies

which also completes the proof of Lemma 3.

(2.36 )

(2.37 )
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The distribution of the Wiener processes W" does not depend on n,
therefore it is enough to study the Lp-norm of

(
h) li2 h

rt(t)= h-a (J rKdt, u)dW(u).

We define

and show that the difference between r l and r 2 is small.

LEMMA 4. If C I and C2 hold, then we have

hf Irl(t) + r,,(t)1 p w(t) dt
a

-r Ir2(t) + r,,(t)1 P w(t) dt = OpW i2 ).
a

Proof Let

and

By definition of K 1 we have

2(1"2 fh
Y~.3(t) = Y~.4(t) + h(b _ a) a K((t - u)/h) K*«t - u*)/h) du

(1"2 fh
+h(b-a) a (K*«(t-u*)/h))2du. (2.38 )

Similarly to (2.14) we obtain that

1Y~.3(t) - }'~.4(t)1 ::;:; C 17{ exp( - 2 - 1/2(t - a )/h)

+exp( _2- 1
/2(b_ t)/h)} (2.39)
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jbn.2(t) - Y~.4(t)1 ::::; CIS {exp( - 2 - 1/2(t - a )/h)

+exp(-2~1/2(b-t)/h}. (2.40)

The processes r l and r 2 are Gaussian and therefore

E Irl(t)!' = y~~E INI',

E Ir2(t)!' = y~~E INI'

(2.41 )

(2.42 )

for aU r> 0, where N is a standard normal r.v. Using (2.39) we can find
two constants C 19 and C20 such that

sup Y~.3(t)::::;CI9
a~t~b

and

sup }'~4(t)::::;C20'
a~t~b

Thus we get from (2.41 )-(2.44) that

(2.43 )

(2.44 )

a + h3i4J Ellrl (t)+rn(tW-!F2(t)+rn(tWI w(t)dt=o(h 1
/
2) (2.45)

a

and

It follows from (2.39) and (2.4) that

and

sup Ib n,2(t) - y~,4(t)1 = o(h),
a + h 3/4 ~ I ~ b _ h Ji4

Introducing Pn.2(t) = cor(rl(t), r 2(t») we have by (2.47)-(2.49) that

sup I1-Pn.2(t)I =o(h).
a + h]/4 ~ t ~ b _ h 3i4

640/73'3-4

(2.47)

(2.48 )

(2.49 )

(2.50)
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Let a + h 3
/
4 ~ t ~ b - h3

/
4

• Applying the Cauchy inequality and (2.41),
(2.42), (2.49) we obtain that

E Ilr 1(t) + r n(t)IP -jr2(t) + r n(t)IP!

~ 2p - 1(E { Ir 1(t) + rn(t )1
2p - 2+ Ir2(1) + rn (t )1

2p - 2}) 1/2

x (E(rl(t)- r 2(t)f)I/2 = o(h l/2) (2.51)

uniformly on [a + h3
/
4

, b - h3
/
4

]. Now Lemma 4 follows from (2.45), (2.46),
and (2.51).

Let

(J f·-XOr3(t) = h b )1/2. K((t - u)/h) dW(u).
( ( - a) -x

Next we estimate the difference between r 2 and r 3 •

LEMMA 5. If Cl and C2 hold, then as n --+ 00, we have

r1r2(t) + rn(t)1 p w(t) dt - r1r3(t) + rn(t)1 P w(t) dt = op(h l
/
2

).
a a

Proof We follow the proof of Lemma 4. Let

and

An elementary calculation shows that

IY~.4(t) - Y~.5(t)1 ~ C23 {exp( - 21
/
2(t - a)/h)

+exp(-2 1
/
2(b-t)/h)} (2.52)

and

l(jn.3(t) - Y~.5(t)1 ~ C24 {exp( _2 1
!2(t - a)/h)

+exp(-21!2(b-t)/h)}. (2.53)
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The bounds in (2.52) and (2.53) appeared earlier in (2.39) and (2.40). Thus
continuing along the lines of the proof of Lemma 4 we get

bf EI1T2(t)+rn(t)IP-1T3(t)+rn(t)IP1 w(t)dt=o(h 1
/
2),

a

which also completes the proof of Lemma 5.
Central limit theorems for Lp-norms of a kernel-transformed Wiener

process were obtained by Csorgo and Horvath [4] and Horvath [9].
They assumed that the kernel has a finite support and therefore their result
cannot be used immediately in our case. First we use the truncated kernel

KA(u) = {K(U),
0,

if lui ~ A

if lui >A,

and then we show that the central limit remains true when A -+ 00. Let

(J fX
TA(t) = (h(b _ a»1/2 -oc KA((t - u)jh) dW(u)

and define

(J2 Joc'
D~ = b _ K~(u) du,

a -x

C<A(S) = f~x KA(t)KA(t+S)dtIJ~oo K~(t)dt,

mA=ErITA(t)+rn(t)IPw(t)dt
a

= foc rIDAx+rn(t)IPw(t)cp(x)dtdx,
-x a

()2(f3; U, V) = I Ib

IUVxy + rn(t)( Ux + Vy) + r;(t)IP w2(t)(IjJ(f3(u); x, y)
R' a

- cp(x) cp(y» dt dx dy du,

and

Now we can state the result of Csorgo and Horvath [4].
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LEMMA 6. We assume that Cl, C2, and C3 hold, A> 0. Then as n ...... 00,

we have

where N(O, l) stands for a standard normal r.v.

The following result shows that lemma 6 remains true when A = 00.

LEMMA 7. We assume that CI, C2, and C3 hold. Then, as n -> 00, we
have

(2.54 )

where N(O, l) stands for d standard normal r.v.

Proof Let

"A = r(IT3( t) + rn(t)IP - ITA( t) + rn(t)IP) w(t) dt - (m - m A),
a

and

Lengthy but elementary calculations give that

IE,,~/h - «(:12 + (:I~ - 2(:12(aLA; D, D A))! = 0(1),

lim (8 2 + 8~ - 282
( a LA; D, A A)) = 0,

A-----i'C£)

and

lim 82/(:I~ = I.
A _ ,x'

Now Lemma 6 implies (2.54).

REFERENCES

(n --+ 00),

1. R. N. BHATTACHARYA AND R. R. RAO, "Normal Approximation and Asymptotic Expan­
sions," Wiley, New York, 1976.

2. D. D. Cox, Approximations or method or regularization estimators, Ann. Statist. 16
(1988), 694-712.



ASYMPTOTICS FOR GLOBAL MEASURES 287

3. M. CsORGO, E. GoMBAY, AND L. HORVATH, Central limit theorems for L p distances of
kernel estimator of densities under random censorship, Ann. Statist. 19 (1991), 1813-1831.

4. M. CsORGO AND L. HORVATH, Central limit theorems for Lp-norms of density estimators,
Probab. Theory Related Fields 80 (1988), 269-291.

5. C. DE BooR, "A Practical Guide to Splines," Springer-Verlag, New York, 1978.
6. L. DEVROYE AND L. GYORFI, "Nonparametric Density Estimation: The L, View," Wiley,

New York, 1985.
7. R. L. EUBANK, "Spline Smoothing and Nonparametric Regression," Dekker, New York,

1988.
8. L. HORVATH, Asymptotics for Lp-norms of Fourier series densiIy estimators, Constr.

Approx. 6 (1990), 375-397.
9. L. HORVATH, On Lp-nonns of multivariate density estimators, Ann. Statist. 19 (1991),

1933-1949.
10. J. KOML6s, P. MAJOR, AND G. TUSNADY, An approximation of partial sums of independent

R.V.'s and the sample D.F.l., Z. Wahrschein. Gebiete 32 (1975),111-131.
II. J. KOML6s, P. MAJOR, AND G. TUSNADY, An approximation of partial sums of independent

R.V.'s and the sample D.F.n., z. Wahrschein. Gebiete 34 (1976), 33-58.
12. K.-S. Ln, A global measure of spline estimate, Ann. Statist. 6 (1978), 1138-1148.
13. P. MAJOR, The approximation of partial sums of independent R.V.'s, Z. Wahrschein.

Gebiete 35 (1976), 213-220.
14. D. L. RAGOZIN, Error bounds for derivative estimates based on spline smoothing of exact

or noisy data, J. Approx. Theory 37 (1983), 335-355.
15. J. RICE AND M. ROSENBLATT, Integrated mean error of smoothing spline, J. Approx.

Theory 33 (1981), 353-369.
16. J. RICE AND M. ROSENBLATT, Smoothing splines: Regression, derivative and deconvolu­

tion, Ann. Statist. 11 (1984), 141-156.
17. B. W. SILVERMAN, Spline smoothing: The equivalent variable kernel method, Ann. Statist.

12 (1984), 898-916.
18. B. W. SILVERMAN, "Density Estimation for Statistics and Data Analysis," Chapman &

Hall, London, 1986.
19. G. Wahba, Smoothing noisy data with spline functions, Numer. Math. 24 (1975), 383-393.


